Extensions 1→N→G→Q→1 with N=C2 and Q=C22.D20

Direct product G=N×Q with N=C2 and Q=C22.D20
dρLabelID
C2×C22.D20160C2xC2^2.D20320,1164


Non-split extensions G=N.Q with N=C2 and Q=C22.D20
extensionφ:Q→Aut NdρLabelID
C2.1(C22.D20) = C2.(C4×D20)central extension (φ=1)320C2.1(C2^2.D20)320,280
C2.2(C22.D20) = C10.55(C4×D4)central extension (φ=1)160C2.2(C2^2.D20)320,297
C2.3(C22.D20) = C23.42D20central extension (φ=1)160C2.3(C2^2.D20)320,570
C2.4(C22.D20) = C24.47D10central extension (φ=1)160C2.4(C2^2.D20)320,577
C2.5(C22.D20) = C23.45D20central extension (φ=1)160C2.5(C2^2.D20)320,585
C2.6(C22.D20) = (C2×C20).28D4central stem extension (φ=1)320C2.6(C2^2.D20)320,286
C2.7(C22.D20) = C10.(C4⋊Q8)central stem extension (φ=1)320C2.7(C2^2.D20)320,288
C2.8(C22.D20) = (C2×C4).21D20central stem extension (φ=1)160C2.8(C2^2.D20)320,301
C2.9(C22.D20) = (C2×C20).33D4central stem extension (φ=1)160C2.9(C2^2.D20)320,304
C2.10(C22.D20) = C23.34D20central stem extension (φ=1)160C2.10(C2^2.D20)320,348
C2.11(C22.D20) = C23.35D20central stem extension (φ=1)160C2.11(C2^2.D20)320,349
C2.12(C22.D20) = C23.10D20central stem extension (φ=1)160C2.12(C2^2.D20)320,350
C2.13(C22.D20) = C23.38D20central stem extension (φ=1)160C2.13(C2^2.D20)320,362
C2.14(C22.D20) = C22.D40central stem extension (φ=1)160C2.14(C2^2.D20)320,363
C2.15(C22.D20) = C23.13D20central stem extension (φ=1)160C2.15(C2^2.D20)320,364
C2.16(C22.D20) = C23.14D20central stem extension (φ=1)160C2.16(C2^2.D20)320,580
C2.17(C22.D20) = C24.16D10central stem extension (φ=1)160C2.17(C2^2.D20)320,588

׿
×
𝔽